
Relaxation dynamics in fluids of platelike colloidal particles

Markus Bier* and René van Roij
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584CE Utrecht, The Netherlands

�Received 1 May 2007; revised manuscript received 8 June 2007; published 29 August 2007�

The relaxation dynamics of a model fluid of platelike colloidal particles is investigated by means of a
phenomenological dynamic density functional theory. The model fluid approximates the particles within the
Zwanzig model of restricted orientations. The driving force for time dependence is expressed completely by
gradients of the local chemical potential, which in turn is derived from a density functional—hydrodynamic
interactions are not taken into account. These approximations are expected to lead to qualitatively reliable
results for low densities like those within the isotropic-nematic two-phase region. The formalism is applied to
model an initially spatially homogeneous stable or metastable isotropic fluid which is perturbed by switching
a two-dimensional array of Gaussian laser beams. Switching on the laser beams leads to an accumulation of
colloidal particles in the beam centers. If the initial chemical potential and the laser power are large enough, a
preferred orientation of particles occurs, breaking the symmetry of the laser potential. After switching off the
laser beams again, the system can follow different relaxation paths: It either relaxes back to the homogeneous
isotropic state or it forms an approximately elliptical high-density core which is elongated perpendicular to the
dominating orientation in order to minimize the surface free energy. For large supersaturations of the initial
isotropic fluid, the high-density cores of neighboring laser beams of the two-dimensional array merge into
complex superstructures.
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I. INTRODUCTION

Fluids of platelike colloidal particles, e.g., clay suspen-
sions, are of enormous fundamental and technological rel-
evance because of their abundance and their distinct proper-
ties, due to the orientational degrees of freedom of the
constituting particles. These systems exhibit many interest-
ing phenomena such as flocculation, gelation, aging, and
even liquid-crystal phase transitions �1–11�. During the last
decade quite some progress has been made in both the syn-
thesis �12,13� and the theoretical description of the equilib-
rium structure �14–25� of suspensions of platelike colloidal
particles. However, understanding the nonequilibrium prop-
erties of these systems is still a big challenge.

Systems out of equilibrium are commonly analyzed either
by investigating the relaxation of the system into equilibrium
after an instant change of the conditions, e.g., due to switch-
ing an external field, or by studying the system in a �non-
equilibrium� stationary state. The present theoretical work is
devoted to the former case of relaxation within a model fluid
of platelike colloidal particles; stationary states will be ad-
dressed in the future.

In view of the spatial inhomogeneities expected to be
found, which in equilibrium systems are most adequately
described by density functional theory �DFT� �26–28�, the
current investigation is performed within the framework
of a phenomenological dynamic density functional theory
�DDFT�, which proposes an equation of motion for the par-
ticle number density profiles �29�. The latter are assumed to
describe the state of the system completely, as within DFT
any relevant quantity is a functional of the densities. More-
over, DFT is reproduced as the stationary limit of DDFT.

The motivation of the DDFT equation within this work
follows the traditional reasoning known from treatments of
time-dependent Landau-Ginzburg and Cahn-Hillard models
in studies of critical dynamics, spinodal decomposition, and
crystal growth �30–33�: the larger the thermodynamic dis-
tance from equilibrium, the faster the change of the state of
the system. In the present case, the state can change due to
translation as well as due to rotation of the platelike colloidal
particles. Moreover, the total number of particles in the sys-
tem is conserved, whereas the orientation is not. Hence the
DDFT to be detailed in Sec. II is analogous to model C in the
classification of Hohenberg and Halperin �34�. Alternatively,
the present DDFT can be regarded as an elaborate phase field
theory �35,36� with the order parameter tensor as the natural
phase field.

In recent years, DDFT equations have been derived based
on �overdamped� Langevin dynamics by approximating the
time-dependent two-particle density �37–40�. As Langevin
dynamics is considered a reasonable description for dilute
colloidal suspensions, and as the isotropic-anisotropic liquid-
crystal phase transitions in fluids of highly anisotropic col-
loidal particles take place at small number densities, DDFT
is expected to be applicable within the isotropic-nematic
two-phase region of fluids of platelike colloidal particles.

Here, relaxation dynamics is investigated by considering a
two-step switching process: First an initially homogeneous
stable or metastable isotropic state is brought out of equilib-
rium by switching on a two-dimensional array of Gaussian
laser beams. The laser potential acts as an external potential
which tends to form an inhomogeneous equilibrium state. In
Sec. III, the relaxation toward this inhomogeneous equilib-
rium state is traced by integrating the DDFT equation for the
presence of the laser potential. After equilibrating the system
in the presence of a laser potential, the laser beams are
switched off and the dynamics is described by the DDFT
equation for vanishing external field. The system either re-*m.bier@phys.uu.nl
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laxes back to the initial isotropic state or evolves into an
anisotropic state. The various relaxation paths will be ana-
lyzed in Sec. IV. This switching process has been chosen
because it is expected to be realizable in experiments and, at
the same time, numerically convenient boundary conditions
can be used. As an illustration, and in order to allow for
quantitative comparison, the model parameters have been
chosen to describe an aqueous suspension of sterically stabi-
lized gibbsite platelets �41�.

Section V concludes the present work with a discussion of
the applied formalism and the numerical results.

II. FORMALISM

A. Model fluid

The system under consideration is a colloidal suspension
of monodisperse hard platelike particles dispersed within a
continuous solvent. The colloidal particles are modeled by
square cuboids which can take only one out of three mutu-
ally perpendicular orientations �Zwanzig approximation
�42��, chosen to be parallel to the Cartesian axes. A particle is
called an i particle if its square face normal points along the
i axis, i� �x ,y ,z�. The local number density of i particles at

position r is denoted by �i�r�, and the abbreviation ��
ª ��x ,�y ,�z� is used for convenience. The structure of the
model fluid is adequately described in terms of the total den-
sity �ª�i�i and the order parameter tensor Q �43� which,
within Zwanzig models, is given by the diagonal form

Qii� =
1

2
�3

�i

�
− 1	�ii�. �1�

Here �ii� denotes the Kronecker delta.

B. Equilibrium density functional theory

Density functional theory �26,27� is the method of choice
in order to investigate equilibrium properties of spatially in-
homogeneous fluids �28�. An accurate version of DFT for the
Zwanzig model, which reproduces the exact second and third
virial coefficients and which possesses the property of di-
mensional crossover, is the fundamental measure theory due
to Cuesta and Martínez-Ratón �44,45�. It has been applied to
investigate monodisperse �18,46� and polydisperse �47�
Zwanzig models. Within this framework, the free energy
functional is given by

�F��� � =
 d3r��
i

�i�r��ln��i�r��3� − 1 + �Vi�r��

+ �„n� �r�…	 , �2�

where � is the inverse temperature, � denotes the thermal de
Broglie wavelength, Vi�r� represents the external potential
exerted on i particles at position r, and

�„n� �r�… = n0�r�ln�1 − n3�r�� +

�
q

n1q�r�n2q�r�

1 − n3�r�
+

�
q

n2q�r�

�1 − n3�r��2

�3�

describes the local excess free energy density. The latter is a
function of the weighted densities n��r�ª�i��,i � �i�r� with
� denoting convolution and weight functions defined by

�0,i�r� = a�rx,Sxi�a�ry,Syi�a�rz,Szi� ,

�1x,i�r� = b�rx,Sxi�a�ry,Syi�a�rz,Szi� ,

�1y,i�r� = a�rx,Sxi�b�ry,Syi�a�rz,Szi� ,

�1z,i�r� = a�rx,Sxi�a�ry,Syi�b�rz,Szi� ,

�2x,i�r� = a�rx,Sxi�b�ry,Syi�b�rz,Szi� ,

�2y,i�r� = b�rx,Sxi�a�ry,Syi�b�rz,Szi� ,

�2z,i�r� = b�rx,Sxi�b�ry,Syi�a�rz,Szi� ,

�3,i�r� = b�rx,Sxi�b�ry,Syi�b�rz,Szi� , �4�

where the abbreviations a�r ,S�ª 1
2 ���S /2+r�+��S /2−r��

and b�r ,S�ª��S /2− �r�� are used, and Sqi denotes the exten-
sion of i particles along the q axis. The term “fundamental
measure theory” is related to the geometric interpretation of
spatial integrals of the weight functions of Eq. �4� as particle
number, linear extension in the x, y, and z directions, cross-
sectional area perpendicular to the x, y, and z axes, and par-
ticle volume, respectively.

Within a canonical system the equilibrium density profiles

��
eq minimize F��� � under the constraint


 d3r�
i

�i�r� = const. �5�

The corresponding Lagrange multiplier is the chemical po-
tential �. With the local chemical potential

�i�r,��� �� ª 
 �F

��i�r�



��

, �6�

��
eq satisfies the Euler-Lagrange equation

�i�r,��� eq�� = � , �7�

i.e., equilibrium density profiles render the local chemical
potential as a function of position �r� and orientation �i� into
a constant.

C. Dynamic density functional theory

A system initially out of equilibrium will be driven to-
ward equilibrium. Motivated by equilibrium DFT, it will be
assumed that the state of the system is described by time-

dependent density profiles �� �· , t�. This assumption implies
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neglect of hydrodynamic interactions, which depend on the
velocity field. It is found that hydrodynamic interactions be-
come more and more relevant for increasing packing frac-
tions �48,49�. As the proposed theory is intended to be
applied to dilute colloidal suspensions, not taking hydrody-
namic interactions into account is considered to be a reason-
able approximation.

In order to investigate the temporal evolution of the sys-

tem, an equation of motion for �� �· , t� has to be prescribed.
Here the following form is proposed:

��i�r,t�
�t

= � ��i�r,t�
�t

	
trans

+ � ��i�r,t�
�t

	
rot

, �8�

where the first term on the right-hand side describes the con-
tribution due to the translation of particles with fixed orien-
tation, and the second term represents the contribution due to
the rotation of particles keeping the local total density ��r , t�
constant.

The translational part satisfies the continuity equation

� ��i�r,t�

�t
	

trans

ª − �
q

�jiq„r,��� �· ,t��…

�rq

, �9�

where jiq describes the translational current of the i particles
in the q direction. Following Dieterich et al. �29�, the current
is assumed to be proportional to the local density and to the
negative gradient of the local chemical potential:

jiq„r,��� �· ,t��… ª − 	iq�i�r,t�
���i„r,��� �· ,t��…

�rq

. �10�

Here the translational diffusion matrix 	 with

	iq = � 	� , i = q ,

	�, i � q
� �11�

accounts for different diffusivity of platelike colloidal par-
ticles parallel �	�� and perpendicular �	�� to the symmetry
axis.

The rotational part of Eq. �8� is modeled by a master
equation

� ��i�r,t�
�t

	
rot

= � ��i�r,t�
�t

	
rot

gain

+ � ��i�r,t�
�t

	
rot

loss

, �12�

with the “gain” term

� ��i�r,t�
�t

	
rot

gain

� �
i�

���i�„r,��� �· ,t��…

− ��i„r,��� �· ,t��…��i��r,t� �13�

and the “loss” term

� ��i�r,t�
�t

	
rot

loss

� − �
i�

���i„r,��� �· ,t��…

− ��i�„r,��� �· ,t��…��i�r,t� . �14�

Hence

� ��i�r,t�
�t

	
rot
ª −

1

6

�
i�

��i�r,t� + �i��r,t�����i„r,��� �· ,t��…

− ��i�„r,��� �· ,t��…� . �15�

The proportionality factors of Eqs. �13� and �14� equal the
rotational diffusion coefficient, which in terms of the rota-
tional relaxation time 
 is given by 1/6
.

In the limit of infinitely thin platelike colloidal particles,
Brenner �50� has worked out translational and rotational dif-
fusion coefficients. These expressions in the present notation
lead to the rotational relaxation time


 =
2

9
��D3, �16�

where � is the viscosity of the solvent and D denotes the
diameter of the platelike colloidal particles, and to

	�
 =
D2

36
, 	�
 =

D2

24
. �17�

Equations �8�–�10� and �15� together with the definition
Eq. �6� and the density functional Eqs. �2�–�4� completely
specify the dynamic density functional theory for the Zwan-
zig particles to be investigated within this work.

Integration of the equation of motion Eq. �8� with an ini-

tial configuration �� �· ,0� leads to the time-dependent density

profile �� , which contains all spatial and temporal informa-
tion.

The proposed DDFT is consistent with equilibrium DFT

as any equilibrium state ��
eq satisfies Eq. �7� and therefore

does not change under the dynamics represented by Eqs.
�8�–�10� and �15�.

D. External potential

Section III studies the relaxation of the model fluid within
an external field. In view of conceivable experimental real-
izations this potential is chosen to model a two-dimensional
array of Gaussian laser beams. Following the notation of
Ref. �51�, the force density on an inhomogeneous dielectric
fluid is given by

f�r� = −
1

2
�0E2�r� � ��r� , �18�

where �0 is the permeability of the vacuum, E2 denotes the
temporally averaged square of the local electric field, and
��r� is the local relative permeability. A single Gaussian
beam of width w and power P propagating parallel to the z
axis is described by �51�

E2�r� =
2P


n�0cw2 exp�−
2�rx

2 + ry
2�

w2 	 �19�

with the refractive index n and the speed of light c. The total
force Fi�r� exerted on a single i particle at position r is given
by an integration of f over the particle volume. Given the
refractive indices of the solvent, nsolv, and of the colloidal
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particle, ncoll, � can be assumed to change discontinuously
from nsolv

2 outside the particle to ncoll
2 inside the particle. The

aforementioned volume integration hence reduces to a sur-
face integration, which can readily be performed in the case
of Zwanzig particles. It is found that Fi�r�=−�Vi�r� with the
laser potential of a single beam

Vi�r� = −
P�ncoll − nsolv�Szi

4c
u�rx,Sxi�u�ry,Syi� , �20�

where Sqi denotes again the extension of i particles along the
q axis and

u�r,S� ª erf��2

w
�r +

S

2
	� − erf��2

w
�r −

S

2
	� . �21�

For ncoll�nsolv, the laser potential is attractive.

E. Choice of parameters and numerical method

In order to obtain solutions of the DDFT equation speci-
fied in Sec. II C, one has to fix the model parameters describ-
ing the particle geometry, the particle diffusivity, and the
laser potential. In the following, these parameters have been
arbitrarily chosen to model the aqueous suspension �viscosity
�=8.9�10−4 Pa s, refractive index nsolv=1.33� of sterically
stabilized gibbsite platelets �refractive index ncoll=1.58�
sample A10P of Ref. �41� �diameter D=165 nm, aspect ratio
12� irradiated by a two-dimensional square array of laser
beams each of power P=10 mW and width w=5D propagat-
ing in the z direction. Neighboring laser beams within the
two-dimensional array are chosen to be 30D apart.

Due to the periodicity of the total laser potential, the ac-
tually infinite system is described in terms of a finite system
with periodic boundary conditions under the influence of one
single laser beam centered at the origin. The density profiles,
which vary only in the x and y directions but not in the z
direction, are defined on a square of side length 30D with
periodic boundaries. Due to symmetries of the external po-
tential, only one-quarter has actually to be coded, which is
done by means of a grid with spacing D /2. This grid leads to
slightly broadened isotropic-nematic interfaces as compared
to calculations with finer grids. However, such a minute in-
accuracy is considered irrelevant as compared to the numeri-
cal advantage gained by the relatively coarse grid. A particu-
larly efficient numerical implementation is possible if one
approximates the colloidal particles by infinitely thin plate-
lets; an exception is Eq. �20� where a thickness of D /12 is
used in order to avoid a vanishing laser potential.

Figure 1 displays the orientationally averaged laser poten-

tial V̄ª

1
3�iVi as well as the local difference Vx−Vy of the

potentials exerted on the x and y particles. The attractive
laser potential is approximately axially symmetric on the en-
ergy scale �−1 �Fig. 1�a��, whereas there are deviations on the
energy scale 10−3�−1 �Fig. 1�b��.

According to Eq. �16�, the rotational relaxation time is
given by 
�214 �s. The calculated translational diffusion
coefficients �see Eq. �17�� compare well with the measured
ones of Ref. �41�. The DDFT equation is integrated with
respect to time by means of the Euler-forward method with
integration time steps of 
 /100.

For the given set of parameters, one finds a first-order
isotropic-nematic bulk phase transition at a reduced
chemical potential �b

*=−1.372 716 808 465 13 with �*

ª��−3 ln�2� /D�. At this binodal �b� the isotropic bulk
phase of density �b

isoD3�1.144 coexists with the nematic
bulk phase of density �b

nemD3�1.576 and scalar order pa-
rameter S=� 3

2 cos���2− 1
2
��0.83, where �·� denotes the ther-

mal average and � is the angle between the particle normal
and the nematic director �43�. For illustrative purposes, the
reduced chemical potentials �* are also expressed in terms of
the supersaturation �ª ��−�b

iso� /�b
iso of an isotropic fluid of

reduced chemical potential �*. The isotropic-nematic inter-
facial tensions for the nematic director pointing parallel and
perpendicular to the interface normal are given by ���D2

=2.051 633 048�10−4 and ���D2=3.832 557 464�10−4,
respectively. The isotropic spinodal �is� is located at the re-
duced chemical potential �is

* �−1.128, where the metastable
isotropic state takes a density of �is

isoD3�1.244. The nematic
spinodal �ns� is located at the reduced chemical potential
�ns

* �−1.399 where the stable isotropic state takes a density
of �ns

isoD3�1.133.

III. RELAXATION IN EXTERNAL FIELD

This section describes the influence of the external laser
potential Vj�r� �see Sec. II D� on an initially homogeneous
isotropic fluid of platelike colloidal particles �see Sec. II A�.
Depending on the initial chemical potential, two qualitatively
different scenarios are possible.

For reduced chemical potentials �*��̃*, the fluid stays
isotropic throughout and the laser potential merely leads to
an axial symmetric accumulation of colloidal particles near
the origin. For the parameters of Sec. II E, the limiting re-
duced chemical potential is �̃*�−1.6 �supersaturation ��
−0.080�.

However, if the initial reduced chemical potential satisfies
�*��̃*, the initial isotropic symmetry of the fluid is broken.
Initially homogeneous states within the range �*� ��̃* ,�is

* �
exhibit the same qualitative behavior. Hence it is sufficient to
describe the case of one initial state corresponding to, e.g.,
�*=−1.25 ��=0.044�. A representation of the solutions of
the DDFT equation in terms of the total density profile � and
the order parameter tensor component profiles Qxx and Qyy is
displayed in Fig. 2.

FIG. 1. �a� Orientationally averaged laser potential V̄�x ,y� ex-
hibiting an approximately axial symmetric attraction of platelike
colloidal particles by the laser beam. �b� Deviations from the rota-
tional symmetry appear on a smaller energy scale.
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FIG. 2. Temporal evolution of an initially homogeneous supersaturated isotropic fluid of platelike colloidal particles under the influence
of a laser potential in terms of the total density profile � and the order parameter tensor component profiles Qxx and Qyy. The length scale
D and the time scale 
 correspond to the diameter and the rotational relaxation time of the colloidal particles, respectively. The equilibrium
densities at isotropic-nematic two-phase coexistence are given by �b

isoD3�1.144 for the isotropic state and �b
nemD3�1.576 for the nematic

state.
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After a time of t=50
, slight distortions of the initial ho-
mogeneity due to the attraction of the colloidal particles by
the laser beam become visible in the total density profile �;
the density at the origin is ��0,0�D3�1.382. Orientational
ordering, however, is still negligible.

At time t=290
, more particles have been concentrated
near the origin ���0,0�D3�1.450� at the expense of the di-
rect surroundings. Moreover, four maxima of the total den-
sity profile � formed near the origin ���±1.5D ,0�D3

=��0, ±1.5D�D3�2.250�. The cubic symmetry of the total
density profile � and the rectangular symmetry of the order
parameter components Qxx and Qyy reflect the orientation
dependence of the external laser potential Eq. �20� �see Fig.
1�b��.

At t=440
, the cubic symmetry of the total density profile
is broken by forming a bridge between two opposite peaks
present at time t=290
. The density at the origin has in-
creased to ��0,0�D3�2.723. In the current case this bridge
is formed by x particles, but a bridge made of y particles is
possible as well. It has been confirmed that minute rounding-
off errors in the very first integration step give rise to the
formation of bridges of one or the other orientation. The two
peaks of y particles, which do not form a bridge, have moved
away from the origin, and the local maximum of the total
density is given by ��±3.5D ,0�D3�1.648. They are subse-
quently decreased because the nearby bridge forces the par-
ticles to take the x orientation and afterward join the bridge.

At time t=500
, the two peaks of y particles have disap-
peared completely. The approximately elliptical core �semi-
axes of half height contour approximately 2.1D and 2.6D� of
increased particle concentration near the center ���0,0�D3

�2.805� comprises mostly x particles. In the following,
more and more particles from the surroundings are added to
the high-density core, giving rise to a decrease of the total
density outside the laser beam.

From time t=2000
 onward, the system is almost equili-
brated and the state practically no longer changes in time.
The final high-density core has, as the orientationally aver-

aged laser potential V̄ �Fig. 2�a��, an almost circular cross
section �radius of half height contour approximately 2.9D�.
The total density at the origin is ��0,0�D3�3.530, whereas
the minimum of approximately 1.101 is found at a distance
of about 8.5D from the origin. Due to the small finite size
�diameter 30D� of the considered part of the total system, the
total density at the �periodic� boundaries has been decreased
to a value of����D3�1.104.

The trajectory of the system for �*��̃* can be summa-
rized as follows. The laser potential, which is not axially
symmetric �see Fig. 1�, attracts particles to the origin and
thereby creates four nematic nuclei �two of x particles and
two of y particles�, which compete at the origin. If one pair
of nuclei breaks the symmetry at the origin, it forms a bridge,
whereas the other pair of nuclei decays. This scenario hinges
on the creation of the nematic nuclei and hence on a suffi-
ciently strong laser potential: The limiting reduced chemical
potential �̃* is expected to decrease upon increasing the laser
power P. In particular, for sufficiently strong laser potentials,
�̃* can be located well within the isotropic phase of the bulk
phase diagram; i.e., the symmetry breaking scenario can oc-

cur for initial states that correspond to a stable isotropic fluid.
For a given initial reduced chemical potential �*, one can

define a limiting laser power P̃��*� such that the symmetry

breaking scenario will take place if and only if P� P̃��*�.
For the case �*=−1.25 ��=0.044� and the parameters of
Sec. II E, the limiting laser power has been determined ap-

proximately as P̃�−1.25��3.5 mW.

IV. RELAXATION OF THE FREE FLUID

The previous section described the equilibration path of
an initially homogeneous isotropic fluid within a laser poten-
tial. The equilibrium structure in the presence of the laser
potential was attained after about t=2000
 �see Fig. 2�. The
present section is concerned with the temporal evolution of
the fluid after switching off the laser beam at time t*

ª2000
. Three possible scenarios for the evolution of the
free fluid have been identified, determined by the total den-
sity of the initial homogeneous isotropic fluid at time t=0.

If the total density at time t=0 is small ��*�−1.32,
��0.019�, the high-density core present at t= t* �see Sec. III�
dissolves completely for t→� by releasing the excess
amount of particles to the surroundings. Under these condi-
tions the system relaxes back to the initial homogeneous iso-
tropic state. In the case of a supersaturated initial isotropic
system ��*� ��b

* ,−1.32�, �� �0,0.019�; see Sec. II E�, clas-
sical nucleation theory would consider the perturbation due
to the external potential too small to cross the high free en-
ergy barrier between the weakly supersaturated metastable
isotropic state and a stable nematic state.

For intermediate initial supersaturation, the high-density
core reshapes with time, attaining for t→� a finitely elon-
gated, approximately elliptical shape. Figure 3 displays the
structures of the almost equilibrated fluids for initial reduced
chemical potentials �*� �−1.31,−1.27,−1.21� �supersatura-
tions �� �0.022,0.037,0.058�� at time t= t*+10 000
. These
structures exhibit the same total density at the origin
��0,0�D3�1.62, the same total density far from the
origin����D3�1.15, as well as the same aspect ratio 1.85 of
the half height contour. Note that the core extension of the
equilibrium state can be as small as a few particle diameters
�see the case �*=−1.31 ��=0.022� in Fig. 3�. Moreover, the
high-density core imposes orientational order to such a de-
gree that a preferred alignment of the platelike particles is
found even within the dilution zone surrounding it.

An estimate of the aspect ratio of the equilibrium half
height contour can be obtained within a sharp-kink approxi-
mation, which describes the equilibrium structures of Fig. 3
by a nematic ellipse surrounded by isotropic fluid where the
isotropic-nematic interface is described by a step function.
Assuming an angle-dependent interfacial tension ����
ª�� cos���2+�� sin���2, where � denotes the angle be-
tween the contour normal and the nematic director, and
where �� and �� are the isotropic-nematic interfacial ten-
sions given in Sec. II E, one obtains an approximate surface

free energy F̃surf by integration of � along the contour of an

ellipse. Minimizing F̃surf with respect to the semiaxes of the
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ellipse under the constraint of constant area of the ellipse
leads to the aspect ratio 1.842 49. This value agrees well
with the value 1.85 of the equilibrium structures of Fig. 3.
The calculation also shows that the aspect ratio depends only
on the ratio of the interfacial tensions but not on the area of
the ellipse.

Within the terminology of classical nucleation theory, the
perturbation due to the laser potential has been large enough
to cross the free energy barrier between the metastable iso-
tropic state and a state containing an approximately elliptical
nematic core surrounded by an isotropic fluid. In compliance
with classical nucleation theory, the shape of the core is de-
termined by a minimum of the surface free energy, and the
densities within and outside the core are approximately given
by the isotropic-nematic coexistence values. However,
whereas classical nucleation theory and its generalizations
�52� seek for the fluctuation-induced critical nucleus, which
corresponds to the free energy “saddle point” between the
metastable and stable states, the perturbations considered in
the present work are of external origin and the free energy
barrier is crossed along “higher” paths.

If the initial reduced chemical potential �* is sufficiently
large, the high-density core contains enough particles to
grow to the �periodic� boundary of the modeled part of the
system, where it merges with its “images” into a system-
spanning superstructure. Figure 4 displays this behavior for
the case �*=−1.13 ��=0.087�. Directly after switching off
the laser beams at time t= t*, a circular high-density core
with total density ��0,0�D3�3.734 is present. At time t
= t*+10 000
 the total density at the origin has decayed to
��0,0�D3�1.62 and the aspect ratio of the half height con-
tour is 1.81. These values agree with those of the cases dis-
played in Fig. 3. However, the region of orientational order,
which extends beyond the dense core, has reached the peri-
odic boundaries of the system. The high-density core thereby
interacts with its images, which leads to a further stretching
as displayed for time t= t*+15 000
. Finally the high-density
core merges with its images, forming a bandlike structure
with total densities ��0,0�D3�1.58 and ��±15D ,0�D3

�1.14. This structure corresponds to a lower free energy as
compared to the approximately elliptical structure, because
the isotropic-nematic interface is now everywhere parallel to

FIG. 3. Structure of a free fluid
of platelike colloidal particles for
reduced chemical potentials �*

� �−1.31,−1.27,−1.21� �super-
saturations �� �0.022,0.037,
0.058�� at time t= t*+10 000
.
The fluid has been exposed for a
time interval t*=2000
 to a laser
potential �see Fig. 2�, which after-
ward was switched off. These
structures represent the equilib-
rium structures as they no longer
change in time.
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the nematic director. The time scale on which the high-
density core stretches is much larger than the time scales of
the processes observed in the presence of the laser potential
�see Sec. III� because the chemical potential gradients and
hence the currents are much smaller here. In an experimental
realization, the high-density cores at the centers of the indi-
vidual laser beams will be oriented in different directions.
Upon merging the high-density cores, a complex networklike
structure is expected to form.

V. DISCUSSION AND SUMMARY

The previous three sections introduced and applied a dy-
namic density functional theory for a model fluid of platelike
colloidal particles. The particles are assumed to be infinitely
thin, and the orientational degrees of freedom are taken ap-
proximately into account by restricting the particle normal to
three mutually perpendicular directions �Zwanzig model
�42��. Although qualitative, this model exhibits, in agreement

FIG. 4. Growth of the high-
density core within a free fluid of
platelike colloidal particles for ini-
tial reduced chemical potential
�*=−1.13 �supersaturation �
=0.087�. The fluid has been ex-
posed for a time interval t*

=2000
 to a laser potential �see
Fig. 2�, which afterward was
switched off. The growing high-
density core ultimately merges
with its images due to periodic
boundary conditions.
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with experimental studies �9–11�, an isotropic-nematic bulk
phase transition at low number densities. Within the frame-
work of DDFT, the state is described by a set of density
profiles and the proposed equation of motion is constructed
in order to fulfill the conservation of the total number of
particles. Time dependence is generated by gradients of the
local chemical potential, which is derived from a density
functional. The phenomenological parameters appearing in
the equation of motion are determined by matching the dilute
limit with single-particle translational and rotational diffu-
sion �50�. This approach does not take hydrodynamic inter-
actions between colloidal particles into account, because
they are assumed to be small for the small densities within
the isotropic-nematic two-phase coexistence region consid-
ered here.

The proposed DDFT is applied to the investigation of
relaxation dynamics of the model fluid. In a first step the
relaxation of an initially homogeneous isotropic fluid in an
external potential due to a two-dimensional array of laser
beams �Fig. 1� is studied. The restriction on the orientational
degrees of freedom of the particles leads to structures of
rectangular symmetry �Fig. 2�. In particular, a transient cubic
symmetric total density profile changes into an only rectan-
gular symmetric total density profile. For a model of continu-
ous orientations, it can be expected to find an axial symmetry
instead of the cubic symmetry. However, the spontaneous
symmetry breaking into a rectangular symmetric equilibrium
state is expected to be found for continuous orientational
degrees of freedom, too.

For an infinite system initially prepared within the
isotropic-nematic two-phase coexistence region and one
single laser beam of sufficient strength, instead of an array of
laser beams, one would expect an equilibrium structure com-
posed of three regions: A narrow high-density core at the
position of the laser beam is surrounded by an annulus of
nematic structure of total density �b

nem �see Sec. II E� which
is surrounded by an annulus of isotropic structure of total
density �b

iso �see Sec. II E�; the sizes of the isotropic and
nematic annuli are related to the initial state by means of the
“lever rule.” In order to form this structure, the system has to
be large enough such that the amount of fluid within the
high-density core and the isotropic-nematic interface is neg-
ligible as compared to the total amount of fluid. However,
the two-dimensional grid applied within this work does not
allow for sufficiently large single-beam systems. In contrast,
the smallness of the periodicity of the system considered in
this work leads to a rather strong dilution of the fluid in the
space between the laser beams.

In classical nucleation theory one considers the temporal
evolution of fluctuation-induced “droplets” of the stable

�nematic� phase surrounded by the metastable �isotropic�
phase, where the densities are chosen as the two-phase coex-
istence values. The smallness of the periodicity of the current
system, however, leads to a high-density core whose size
equals the size of the laser beam and whose density is deter-
mined by the strength of the external potential. Therefore the
high-density cores in this work are very different from the
droplets considered in classical nucleation theory. Moreover,
the relaxation paths here do not cross the “critical nucleus,”
which corresponds to the minimal perturbation that leads to
the equilibrium state and which is located at a saddle point of
the free energy �52�. Thus the current results can be partly
looked at in terms of the terminology of classical nucleation
theory, because both are based on a free energy function�al�;
however, the setup considered here is different from that of
classical nucleation theory.

After attaining a state close to the equilibrium state in the
presence of the laser potential, the laser beams are switched
off and the relaxation of the �now� free fluid to equilibrium is
traced. For sufficiently large initial supersaturation of the ini-
tial state, one finds the central region of increased particle
density stretching �Fig. 3�. The shape of these cores re-
sembles tactoids which have been found in dispersions of
rodlike colloidal particles �53�. If the moving density fronts
hit the periodic boundaries of the modeled part of the system
they merge with their images into a superstructure �Fig. 4�.
As the nematic directors within the high-density cores of the
individual laser beams may point in different directions, the
merging of two neighboring cores is expected to give rise to
one more relaxation process in which the merging cores re-
orient their colloidal particles along a common nematic di-
rector. This effect, however, is beyond the present study.

In summary, a dynamic density functional theory for a
model of fluids of platelike colloidal particles has been pro-
posed and applied to the relaxation dynamics of the fluid
under the influence of the potential of a two-dimensional
array of laser beams. A rich phenomenology, including the
occurrence of individual approximately elliptical high-
density cores and the possible formation of complex super-
structures, has been found.
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